Feel free to call us: 940-784-3002

The majority of the samples we receive come in volumes high enough to completely fill the well in any of our standard sample holders. Some are too large or oddly shaped which calls for a special holding solution like those listed here, but many are simply very small quantities of powder. Placing these in a standard holder would leave them well outside the plane of diffraction and provide terrible data, not to mention substantial scatter
or diffracted background from whatever the powder is placed on. The answer is a zero background sample holder (ZBH). Most our users at KS Analytical Systems run the original Siemens/Bruker plates, but others are using Si(100) and even glass substrates. We’re very happy to say that
we’re able to offer a direct replacement for these with our new ZBH-32 holders. These fit most Siemens XRD systems and can be customized for use in most any other system. Contact us for more information on this. The scan below shows the data collected from a single mg of Silicon 640B standard powder spread across a ZBH.

Off Planar Quartz ZBH w-1mg 640B

Full scan of 1mg Silicon 640B standard spread across a ZBH


ZBH-32 sample holders mounted for Siemens and Bruker single sample stages.


Some users report acceptable results using simple glass plates. While there are serious caveats here, it may be a reasonable solution for some users. The issue with amorphous glass is not diffracted peaks in the background, but rather, scatter off the surface. X-ray scattering off a surface is inversely proportional to the average atomic number of that material. That is to say, the lighter the matrix, the more efficiently it will scatter X-rays. This is why we use a pure Graphite sample to characterize the emission spectra of our XRF instrumentation. The glass sample shows the expected scatter “hump” starting at a very low angle and it doesn’t flatten until nearly 100°2Θ. While some of this can be modeled and subtracted with good profile fitting software like Jade 2010, it can be challenging to match the data quality of a good ZBH. We’re working on a series of videos to guide new users through some of these features, but on-site training classes are also available.


Glass plate

Amorphous glass empty

Glass-Qtz-Si510 overlay

Glass, ZBH-32 and off-planar quartz scans overlayed for comparison









Several of our customers in the geological industry use standard Si(100) wafers. These can be a great solution, but again have serious drawbacks for some applications. The Si(100) material creates diffracted peaks which are very sharp and therefore easier to model out sometimes, but also very high as the material is monocrystalline. The scan below shows what happens when one tries to run a normal scan across a bare plate. The largest peaks are actually only one or two which have over loaded the detector and caused it to drop out. All of these scans were collected with our SDD-150 which can handle up to 1×10^6 cps, but for the sake of good comparison, we left it tuned as it would be for a standard pattern. The monocrystalline nature of this material causes big problems, but it also allows for a creative solution. See the second scan for the results of the same measurement with the plate angled 1 degree off of theoretical. With this geometry, it’s unlikely this would affect the data quality dramatically, but the offending peaks are drastically diminished.


Si-100 wafer

Si-100 empty

Si-100 locked vs unlocked

Si-100 standard vs skewed scan











Off-planar Quartz holders have been the industry standard for decades. Historically, these have been made from solid, monocrystalline quartz material cut at a specific angle (6° off the C axis if I’m not mistaken). While these work well, they can be inconsistent. Even some of the OEM holders we’ve tested have shown some peaks which we can’t explain. Talking to some very experienced crystallographers, we find that they’ve had similar experiences.



Off Planar Quartz ZBH

Off-planar Quartz empty

ZBH-32 empty

ZBH-32 empty









We’ve been looking for a better answer for several years, but there are few off-the-shelf materials which work as well as off-planar quartz. The ideal answer was to cut solid Si(100) oriented billets such that the face presented to the diffractometer had no d-spacings which would diffract in the normal range of these machines. This is not unlike the off-planar Quartz method, but the starting material is much more consistent and durable. Si(510) offers very low background as well as the consistency of a manufactured product. The new ZBH-32 sample holders from KSA come in two versions, ZBH-25 and ZBH-32 with the latter being ideally suited for rotating stages and low angle work.





20141124_161938Our recent sealed sample cell project required a thin covering film to be applied over loose powder before analysis by XRD. We tested a few options for this film as part of the design process and the results were interesting enough that we thought it would be worth dedicating a full post to that data and expanding the range of materials a bit to satisfy our curiosity.

All data was collected on our primary powder system. This is a Siemens D5000 configured with a theta/theta goniometer, automatic anti-scatter and divergence slits, a standard sealed Cu tube (LFF) and our new KSA-XRD-150 detector system. We alternate between a digital phi stage, 40-position autosampler and the standard, single sample stage which was used in these experiments. I had a spare sealed-sample cell available which made it easy to exchange the films without disturbing the sample surface. The design of these stretches the film taught each time the cell is assembled. I’d originally tried to simply lay the film over a side-load holder, but without being tightly held, it would buckle enough that results at low angles were probably affected. A NiO standard powder was used due to its high purity and compositional difference from any of the film materials.

The data clearly shows that Polyimide was the best choice for this application as it resulted in very limited attenuation as well as an extremely minimal increase in background intensity/amorphous scatter. Some of the other patterns were very interesting though.

20141124_161656 NiO CONTROL No film










NiO Prolene copy NiO Mylar copy










NiO Polycarbonate copy NiO Polyimide copy











NiO Polypropylene copy



NiO Prolene

Scotch “Magic” office tape. Adhesive side down.

NiO Scotch packing

Scotch “Heavy duty” packing tape. Adhesive side down.











Energy-dispersive detectors have been in use on XRD systems for decades, but have always come with caveats. Low energy resolution, Liquid nitrogen cooling, slow start-up and tedious/cryptic tuning controls have limited their popularity in many applications. Silicon Drift technology solves most of these issues and modern electronics covers the rest. The new KSA-SDD system for X-ray diffraction utilizes a full spectrum EDXRF detector which is fully software tuned. The result is a detection system with high enough energy resolution to match the performance of the traditional diffracted-beam monochromator/scintillation counter combination without the inherent 75% intensity drop. The increased countrate allows for much faster data collection speeds with the same counting statistics. We’ve been using this technology at our in-house testing lab (Texray Laboratory Services) for several months to great effect while we refined the system and are now ready to open it up to all XRD users. Contact us to discuss options for integration into your diffractometer.

SDD-XRD-150 installed on a Siemends D5000TT PXRD system. This is one of the powder systems we operate at Texray-Lab.

SDD-XRD-150 installed on a Siemends D5000TT PXRD system. This is one of the powder systems we operate at Texray-Lab.

The detector mounts directly in place of the original scintillation counter.

The detector mounts directly in place of the original scintillation counter.













  • Scanning 3-4 times as fast as the traditional scintillation counter/diffracted beam monochromator yields nearly identical results.
  • Scanning at the same rate results in much smoother scans, greatly improved statistical data and lower limits of detection/quantification.
Novaculite SDD vs SC

Complete scan of Novaculite Quartz with a diffracted beam monochromator and scintillation counter vs the new KSA-SDD-150.

Novaculite SDD vs SC 5 fingers

5-fingers of Quartz scan of Novaculite Quartz with a diffracted beam monochromator and scintillation counter vs the new KSA-SDD-150.










Energy resolution

  • 140eV under ideal conditions.
  • All KB peaks eliminated electronically.
  • W LA1 (8.40 KeV) lines eliminated from Cu KA1,2 (8.04 KeV) scans even with thoroughly contaminated tubes.
  • Common fluorescence energies (i.e. Fe when Cu tube anodes are used) are greatly reduced. (Bremsstrahlung effects are impossible to remove completely)
  • Most PSD detectors offer no better than 650eV. This allows for a great deal of fluorescence energy to pass as well as W LA1 from older Cu tubes.

Low angle scatter

  • The detector mounts in place of the traditional scintillation counter allowing for use of automated variable (motorized) or interchangeable aperture slits to control angular resolution. Scans starting from 0.5 degrees 2? are possible with the proper slit arrangement just as they are with the scintillation counter. The user controls the intensity vs angular resolution of the scan based upon the ideal conditions for their work rather than the limitations of the hardware.
  • Position sensitive detectors are wide open by design which necessitates knife edges over the sample and additional mechanical aperture plates to block air scatter at low angles. Closing off the detector limits the useable channels and reduces the benefit of these detectors dramatically.
Novaculite SDD vs SC low angle

Minimal low angle scatter due to the use of standard aperture slits.

Novaculite SDD vs SC Cu KB1 and W LA1

Cu KB1 and W LA1 energies diffract from the 100% peak of Novaculite in between the two primary peaks shown here. Tests with a severely contaminated tube showed no W LA1 passing through the discriminator.










Truly zero maintenance design

  • No delays – The detector is ready to collect data almost as soon as power is applied.
  • No external cooling – Air backed Peltier cooling eliminates the need for water circulation and/or liquid nitrogen.
  • Zero maintenance vacuum design eliminates reliance on an ion pump/backup battery.
  • 12 month warranty against hardware failure under normal use.


  • The Digital Pulse Processor (DPP) includes a usb interface allowing for adjustment and refinement should they be necessary for a particular application. With optional software, full quantitative EDXRF analysis can be performed.
  • Compatibility with grazing-incidence attachments and parallel beam optics for analysis of thin films.


The detector can be set for any common XRD anode (energy) easily. Multiple energies may even be configured to allow for use with various anodes without the need for additional hardware. We specialize in Siemens (now Bruker) XRD and WD-XRF instrumention and have installation kits ready for the D500, D5000 and D5005. The output is a standard BNC cable with a 5V square pulse output which is standard across every manufacturer we’ve worked with. Kevex and Thermo Si(Li) detectors used this same output.

Please contact KS Analytical Systems for a quote.


Some months ago we had a pair of scientists visit our space to look over a refurbished Siemens D5000. Interestingly enough, they’d planned to use the system for some basic XRD, but mainly for the development of polycapillary optics. This is a fascinating new technology that’s gaining steam out in the R&D centers around the world and merits a full post dedicated to it ASAP. This is the type of “game changing” innovation which hasn’t come along in XRD in decades. They took delivery of their machine a few weeks ago, but while on-site they asked about another project. All that’s really needed is simple phase analysis by XRD with one complication, the material reacts violently when exposed to air.

We roughed out a basic design the same day, but that was only the beginning. Dealing with materials like this necessitates careful consideration of all material and procedures involved in getting it from the lab where it’s synthesized to ours and back. The final design involved billet Aluminum, BUNA rubber o-rings and polyimide (Kapton) film and took quite a while to flesh out. The end result is a complete system which allows the customer to load the samples into individual cells inside their own glove box. The individual cells can be loaded into the case inside the glove box as well. The outer o-rings on the cells seal against chamfered edges on the pockets of the case creating a second sealed area above and below the sample. It’s unlikely that the inner cell would ever rupture, but this protects the polyimide film and adds a substantial extra level of safety.


This is the complete case as it will ship. The flat-head bolts hold everything together and provide the necessary force to seal the chambers.


With the case open, you can see the individual cells along with the top and bottom of the case. The labeling shouldn’t be necessary since there are strict protocols in place for transportation of this material, but it never hurts to be cautious.


The original design called for a slightly more secure seal, but when we started working up the procedure to assemble them, it became clear that something simpler was needed, particularly considering that these will be loaded in a glove-box. An 11th hour rehash necessitated new o-rings, modification of the outer cell rings and complete redesign and fabrication of the cell center sections. I think this was well worth the effort though as they’re much easier to assemble now. There’s even a nice little tool to make it easier to open them back up for disposal or reloading. The original design would have been essential disposable.

DSC_0331 (2)









Posted by: In: Uncategorized 25 Aug 2014 0 comments Tags: , , , , ,

The most common practice in powder XRD is to simply fill the recessed well of a sample holder with finely ground powder and start collecting data. That works for a great many users, but everyone is eventually faced with a more complicated situation at some point. At Texray, odd samples and special requirements are the norm. The photos below represent some of the common and not-so-common needs we’ve come across. Many of these are one-off designs fabricated by KS Analytical Systems.

20140825_143140The top row shows the three most common holders we see with various well depths. These are almost exclusively used for loose powders. The goal is to get the surface of the sample into the plane of diffraction with as little of the holder in the beam as possible. The plastic material has a very high scattering coefficient which creates a hump in the data around 13 degrees 2Theta. These are all designed for the 40-position sample changers from Siemens (now Bruker).

The second row gets more interesting with a special holder for high volume instruments. This was designed for magnetic handling and worked great as long as you don’t mind the low angle scatter problem of the plastic and aren’t working with ferrous powders.

The middle is one we use for collecting data from membrane filters. These are notoriously hard to hold down with any precision so they get mounted from the rear and held against a “lip” to keep them both flat, and in the plane of diffraction. They work wonderfully.

Next we have a simple side load sample holder. I’m a big fan of these and use them anytime I’m running loose powders on a single sample stage. It allows the user to load with a very smooth top surface that’s perfectly flat without creating any preferred orientation. Preferred orientation is frequently caused by pressure being applied to the basic top-load holders in an effort to get a flat surface. It is to be avoided whenever possible. Notice that the holders are all Aluminum at this point. Most custom holders are Al or a combination of Al and stainless steel depending upon the special properties desired.

The last row are good examples of odd-shaped sample holders. When you’ve got a rock with one flat surface or a little chip of some material, you still need to keep it in the plane of diffraction. The user simply places a ball of clay in the middle of the holder, the sample goes on top of that and then a glass plate is used to crush the clay (with the sample on top) down such that everything is in plane with the elevates posts. These posts interface with the machine to define the plane of diffraction right across their surface, thus the sample is right where it needs to be without any complicated engineering or microscopic adjustments.


Custom holders for a D500 user. Side load as well as top-load in Al.

Custom holders for a D500 user. Side load as well as top-load in Al.

Side load precision without the possibility of powder falling out at low angles.

Side load precision without the possibility of powder falling out at low angles.

Vacuum holding is common when working with semiconductors or other materials with very consistent thicknesses.

Vacuum holding is common when working with semiconductors or other materials with very consistent thicknesses.

We needed to keep our standards in our desiccator cabinet as well as store membrane filters long-term. Custom laser-cut shelves make this easy.

We needed to keep our standards in our desiccator cabinet as well as store membrane filters long-term. Custom laser-cut shelves make this easy.

A typical run of custom sample holders for a high volume XRD operation. This user actually has a custom loading tool that allows for multiple holders to be filled simultaneously.

A typical run of custom sample holders for a high volume XRD operation. This user actually has a custom loading tool that allows for multiple holders to be filled simultaneously.

This is a completely custom stage designed to hold a large thrust bearing race such that the bottom of the groove is in the plane of diffraction for retained austenite and residual stress measurements.  The bearing is held in place by magnets.

This is a completely custom stage designed to hold a large thrust bearing race such that the bottom of the groove is in the plane of diffraction for retained austenite and residual stress measurements. The bearing is held in place by magnets.


































XRD is the preferred analytical method of testing free crystalline silica in workplace atmospheres.   At Texray, we offer respirable silica testing using the NIOSH 7500 method, so we thought those of you in industries such as concrete, construction, glass, milling, mining, hydraulic fracking and sandblasting will find it important to know that OSHA has proposed an update to the current rules.  The most notable change is a decrease in OSHA’s Permissible Exposure Limits (PEL) from 100 mg/m3 of air for general industries and 250 mg/m3 of air for construction industries to 50 mg/m3 of air for all industries.  OSHA, along with other independent occupational health institutions, feel the current PELs are outdated and inadequate, and rightfully so, considering limits were last set in 1971 and based on 1960s research.  However, most of these industries may not feel an impact from such as change, as many employers already use preventative measures to reduce dust exposure.

Would this rule change affect the analytical testing procedure?

Photo Courtesy of New Jersey Department of Health

Photo Courtesy of New Jersey Department of Health

No, XRD limits of detection (LOD) for NIOSH 7500 are 0.005 mg/m3 for an 800 L air sample.  This rule change would not affect the testing method, since the LODs for silica in the form of quartz and cristobalite are well below the newly proposed PEL.  However, the rule change may increase the number of industrial sites needing to test their work environments for respirable silica.

According to OSHA, “The proposed rule is expected to prevent thousands of deaths from silicosis, lung cancer, other respiratory diseases, and kidney disease. OSHA estimates that the proposed rule will save nearly 700 lives and prevent 1,600 new cases of silicosis per year once the full effects of the rule are realized.”  The rule change was proposed last September and the hearing was recently concluded at the beginning of April.  Final decision will be coming soon. We will keep you posted.

In my last post, I hinted towards the importance of literature searches before attempting to analyze a new material, and then someone in one of my discussion groups posted a link to the 30 Most Downloaded Advanced X-ray Analysis Articles from the ICDD. I thought some of you might find this helpful, so I am reposting the link.

30 Most Downloaded AXA Publications

The articles are free to download and written by well-known, respected professionals that have been in the business of X-ray analysis for many years. The topics range from sample preparation to applications to instrumentation hardware. Enjoy!

Over the past 15 years, Barnett Shale has become a major resource for natural gas in Texas.  Being located in the North Texas region, it is easy to see the boom of drilling rigs and wells popping up in the suburban and rural areas between Ft. Worth and Denton.  Collaborations between Geologists at universities and major oil companies have put a large amount of research into characterizing shale.  In 2001, Środoń et al. published a journal article in Clays and Clay Minerals that discussed the importance of sample preparation for sediments, such as shale, to be analyzed using X-ray diffraction.

Powder X-ray diffraction is the preferred and best technique to identify and quantify mineral compositions in geological materials such as rocks, sediments, and soils.  Sample preparation and loading are two important factors for accurate quantitative XRD analysis using Rietveld refinement.  Proper sample grinding and using a side-loader or backside loader are common practices to avoid preferred orientation.  At Texray, we have a variety of sample holders for different applications, and we can even custom build holders for those random parts.  However, in this study we wanted to see for ourselves the effect of sample grinding and particle size, and also we wanted to test out our new McCrone Micronizing Mill.  We already knew what the results would be from experience and previous work by Środoń et al., 2001 and Klug and Alexander, 1974, but this was a fun experiment to try with shale.

Shale rock from the North Texas region

Shale Rock from the North Texas region

The rocks (pictured above) were broken up into smaller pieces using a mortar and pestle, and then half was transferred to the McCrone mill for wet grinding and the other half we continued to grind manually using the mortar and pestle.  By the way if you are running out of bench space in the laboratory and are looking for a mill, I highly recommend the McCrone Micronizing Mill because it takes up very the little space and it’s capable of grinding below 10 μm in less than 10 minutes.  After grinding, we loaded the powder samples into a backside loader and analyzed them using a Bruker D5000 X-ray Diffractometer.

Shale XRD Pattern

XRD pattern of Mortar & Pestle Ground Shale (blue) vs McCrone Mill Ground Shale (red)

In the XRD pattern shown above the main differences you will notice between the two grinding methods are peak intensities and a small 2-theta peak shift.  Both of these differences are effects related to particle size distribution and sample loading.  Wet grinding the shale in a McCrone Mill creates smaller uniform particles (~5μm), therefore when loading the sample into holders the powders pack easier and tighter creating a denser layer of material for the X-rays to penetrate, hence higher peak intensities compared to manual grinding.  Sample preparation is one of the most important aspects to quantitative XRD because of preferred orientation and sample displacement.  In order to reduce user error such as, induced preferred orientation, it is essential we learn from previous research and take the proper steps to prepare samples.  The ICDD is a great source for free literature on applications involving XRD and XRF.  We will be posting more discussions on sample preparation and applications in the future.

Posted by: In: Uncategorized 31 Oct 2013 0 comments

This little animated video was posted  to one of the groups I subscribe to recently. It does a good job if giving the laymen an idea of the power of XRD analysis so I thought I’d share it here.


A large part of our business at KS Analytical Systems is refurbishing and reselling WDXRF and XRD instrumentation. We specialize in Siemens and Bruker models because, and I can’t stress this enough, they last. Siemens was 20 years ahead of their time with features like full computer automation, interlocked radiation housings (not just an enclosed beam path) and independent axis control coming standard on most systems. The D500 may well be the most reliable powder diffractometer ever built and for most of our history, it’s outsold all other models of XRD and XRF combined. Most users are simply performing basic powder scans with many running the optional 40-position sample changer, but I always get excited when I find someone pushing the limits of the platform.

Several years ago I was approached by a new professor at a major American university about purchasing a refurbished Siemens D500 XRD. He’d been seriously considering a new instrument from one of the big-three OEMs, but chose to focus on the D500 due to its reputation for low cost of ownership, versatility and nearly identical resolution/intensity to the new system he’d been looking at. It’s been a few years since that unit was delivered and I’ve been very impressed with the improvements that have been made.

The first step was to bring the software up to date with a complete package from Materials Data Inc. (MDI). This included Datascan 5.0 for instrument control and data acquisition as well as the flagship Jade 9.5 analysis package. Whole pattern fitting (Rietveld), semi-automatic phase ID (Search/Match) and a host of other advanced quantitative and modeling options are included. Jade 9.5 is modular and can be purchased with any combination of these options. I’d estimate that 70% of the XRD systems we sell go out with some level of MDI package. We’ve been working with them for 20 years now and have never heard anything other than glowing praise for their excellent products and support. One key feature of Jade is that it was designed to be a universal analysis solution from the ground up so there’s never a problem opening any of the OEM file formats. It’s much easier to justify the cost to upgrade your software when you know it will integrate seamlessly with any other data or instruments you may encounter. Contact KSA if you’d like more information on this.

Jade 9.5

This is Jade 9.5. You’ll notice that it’s a much different interface than the Jade 2010 program I usually use. This option is modular with available plug-ins for all the higher level functions of Jade 2010, but 9.5 is perpetually licensed.

Virtual XRD

This is actually the VirtualXRD program that comes along with Datascan. I don’t use it often, but some of my users run extremely long count times and predicting the affect of a parameter change could save them days of experimentation. It’s a great tool even for users running simple 1 hour scans.












The next step was more hardware based than anything else. The independent axis control of the D500 (in Theta/Theta or Theta/2Theta configurations) allows for both rocking curves and grazing incidence scans. With the goal of analyzing thin-films in mind, we upgraded the D500 with a grazing incidence attachment. These are designed to minimize scatter while the sample is held at a shallow (usually 3 degrees) incident angle and the scan is performed with the detector alone. The attachment consists of a long collimator coupled with a simple monochromator just before the detector. We’ve performed some rather intense studies with one of these at Texray and were very impressed with its performance. In fact, we use it whenever practical even though we have a dedicated parallel beam optics system in the lab as well. It was about time for a new tube so a new, ceramic Cu long, fine focus tube was included in the upgrade.

Ceramic XRD tubeGrazing incidence attachment











Some additional software solutions were developed on-site to facilitate XRR (X-ray Reflectivity) measurements around the same time. I confess that this is not something I’m personally very familiar with, but it seems fascinating. It involves scans at extremely low angles which can require caution since one is working with a very nearly direct beam.

The last upgrade he made is actually the one that most impressed me and the one I had absolutely nothing to do with. In an effort to further expand the capabilities of his instrument, he purchased and installed an energy dispersive detector with an integral digital pulse processor (DPP). Clever mounting and some experimentation allowed him to perform EDXRF elemental (qualitative AND quantitative) analysis on samples while using the D500s X-ray tube as the primary emission source. The flexibility of the D500 platform even allowed him to control the effective layer depth by adjusting the incident beam angle. Since his application involved analysis of a thin film coating, he set the goniometer to a low angle to minimize penetration depth and substrate interference. After seeing how well this worked, I immediately started working on a similar upgrade that we could offer to all our current and future XRD users. I’ll detail my early progress in the next post.