Feel free to call us: 940-784-3002

I spend a great deal of time meeting with XRD and XRF users throughout the year, but usually in the context of some problem or time-sensitive project. Luckily I’ve been able to attend the Denver X-ray Conference fairly consistently over the last few years. It’s a great time to catch up with other users who are as deeply invested in X-ray spectroscopy and crystallographic analysis as we are. The vendors always put on a great show in the exhibit hall and poster sessions.

The first three days of the week are filled with technical workshops focused on an array of topics. There are always some introductory classes for both XRD and XRF for new users to attend and then there will be additional topics which are usually more advanced. The educational opportunities alone are well worth the attendance fee. Each session is run by an expert in the field and questions, even from industrial users, are welcomed. The sessions are strictly non-sales oriented as well which lends the event a very egalitarian feeling. See the full program here.

Plenary sessions and more sales-oriented meetings occur later in the week and are a great way to get a feel for the cutting edge technology being released by the various vendors. The exhibit hall opens a few days into the conference so everyone has a few days to see all the different booths. We always spend a great deal of time at the Materials Data, Inc and Bruker-AXS booths in particular.

The conference moves between Westminster, CO just North of Denver, Chicago, IL and Big Sky, MT. I’ve never made the trek up to Big Sky, but I hear it’s beautiful. Some attendees only come when it’s up there.

I’d love to connect with as many of our readers as possible so contact us if you’ll be there and I’ll be sure to see you while I’m at DXC-Big Sky!

A great many factors affect the quality of data one can collect on any given instrument, but there are times when simply holding the aliquot is a major hurdle. We spend a great deal of time working out the best ways to hold odd samples and even create custom hardware to do so in some cases. Click here for some of our other posts related to the various sample holders we work with. Choosing the best sample holder for a given project is one thing, but there are also times when a completely different stage is required.

The most common stage is the simple, single sample stage. This relies on three pins to define the plane of diffraction. The sample holder is pressed against these pins by a spring loaded plunger beneath it.

The dreaded “amorphous” hump created by x-rays scattering off plastic sample holders has plagued XRD users for decades. It’s a serious enough problem that we make a good volume of these holders from Aluminum which works very well for loose powders. The plastic scatters xrays at around 13 degrees 2Theta (Cu anode tube) which make a real mess of most geological patterns and isn’t fun to model out for Rietveld refinement. Zero background holders like our ZBH-32 work wonderfully in standard sample stages designed for a single sample at a time, but the large plate isn’t compatible with the autosampler.

I recently had a request for a hybrid holder which would allow for analysis of very small volumes of materials while retaining compatibility with the autosampler. This is almost identical to our standard powder holders, but with a well designed specifically for our small ZBH plate.

Key features include:

  • 6061-T6 Al material (anodized or as-machined)
  • Si(510) plate
  • Raised sample well minimizes the area of the sample holder in the plane of diffraction. (Original Siemens design)
  • Beveled well walls minimize the area of Al in the plane of diffraction
  • Other small modifications are made to improve reliability of these holders in the autosampler

One of the fundamental facts of lab-based X-ray production is that our x-ray tubes emit much more than the pure KA1 lines we rely on for material characterization and quantification. Most XRD users are familiar with techniques and hardware for the reduction or elimination of KB1, W LA1 and Bremsstrahlung, but take for granted the inseparable pair of KA1 and KA2 (referred to as the “doublet”). Luckily for us, these energies are present in strict proportion such that we can factor their paired presence into most XRD analysis to the point that one might barely notice their effect. However, the fact remains that we will see peak broadening at lower angles and completely independent additional peaks at higher angles due to this superfluous discrete emission.

Separating the doublet cannot be accomplished electronically or through absorption/attenuation such as might be effective for KB1 energies. It must be done in the primary-beam with an additional diffraction event. Primary-beam monochromators are generally classified by the number of diffraction events required for a photon to pass completely through the device. Single-bounce, 2-bounce and 4-bounce geometries are common with the latter providing the best energy resolution allbeit the lowest intensity (photon flux). My limited experience suggests that while the single-bounce models retain enough intensity to have some application in powder XRD, the others are relegated to HR-XRD applications such as XRR.

The alignment for any of this hardware is not for the faint of heart as it begins with coarse adjustments using fluorescent screens in the beam path. This was essential for us given how dramatically misaligned the monochromator had become after so many attempts to bring it back into operation. We actually needed our SDD system to verify that we were tuning for Cu KA1 energy rather than the KB1 emissions because some of the most basic aspects of the alignment had pushed way beyond their intended position.

Along the way we built ourselves a motorized remote adjustment tool which we’ll return to the user as small adjustments are required on a regular basis with this kind of monochromator to retain maximum intensity. It’s quite useful and even versatile enough to allow for the adjustment of multiple control knobs.

One final note regarding intensity. It’s easy to get excited about energy resolution like this, but bear in mind that we’re looking at ~20x reduction in intensity due to the inherent losses involved in the primary diffraction event. This data was collected at 10x the normal speed and at half the normal 2Theta step increment so it looks very good, but one would need a compelling reason to slow their data collection this much.

Another side effect of performing your energy discrimination in the primary beampath is that other issues such as fluorescence effects (incident x-rays exciting elements in the sample causing high background intensities) are harder to avoid than they would be with a diffracted-beam monochromator. The 4x reduction in intensity inherent in the diffracted-beam monochromatization makes it a poor choice to eliminate these effects when the incident intensities are already so low. We recommend energy-dispersive detectors such as our SDD-150 to eliminate extraneous energies without sacrificing net intensity. We’ve also worked with the Bruker LynxEye XE-T detector which has a very high energy resolution compared to other position sensitive detectors (PSD). Contact KS Analytical Systems for more information on these options.

Over the past 15 years, Barnett Shale has become a major resource for natural gas in Texas.  Being located in the North Texas region, it is easy to see the boom of drilling rigs and wells popping up in the suburban and rural areas between Ft. Worth and Denton.  Collaborations between Geologists at universities and major oil companies have put a large amount of research into characterizing shale.  In 2001, Środoń et al. published a journal article in Clays and Clay Minerals that discussed the importance of sample preparation for sediments, such as shale, to be analyzed using X-ray diffraction.

Powder X-ray diffraction is the preferred and best technique to identify and quantify mineral compositions in geological materials such as rocks, sediments, and soils.  Sample preparation and loading are two important factors for accurate quantitative XRD analysis using Rietveld refinement.  Proper sample grinding and using a side-loader or backside loader are common practices to avoid preferred orientation.  At Texray, we have a variety of sample holders for different applications, and we can even custom build holders for those random parts.  However, in this study we wanted to see for ourselves the effect of sample grinding and particle size, and also we wanted to test out our new McCrone Micronizing Mill.  We already knew what the results would be from experience and previous work by Środoń et al., 2001 and Klug and Alexander, 1974, but this was a fun experiment to try with shale.

Shale rock from the North Texas region

Shale Rock from the North Texas region

The rocks (pictured above) were broken up into smaller pieces using a mortar and pestle, and then half was transferred to the McCrone mill for wet grinding and the other half we continued to grind manually using the mortar and pestle.  By the way if you are running out of bench space in the laboratory and are looking for a mill, I highly recommend the McCrone Micronizing Mill because it takes up very the little space and it’s capable of grinding below 10 μm in less than 10 minutes.  After grinding, we loaded the powder samples into a backside loader and analyzed them using a Bruker D5000 X-ray Diffractometer.

Shale XRD Pattern

XRD pattern of Mortar & Pestle Ground Shale (blue) vs McCrone Mill Ground Shale (red)

In the XRD pattern shown above the main differences you will notice between the two grinding methods are peak intensities and a small 2-theta peak shift.  Both of these differences are effects related to particle size distribution and sample loading.  Wet grinding the shale in a McCrone Mill creates smaller uniform particles (~5μm), therefore when loading the sample into holders the powders pack easier and tighter creating a denser layer of material for the X-rays to penetrate, hence higher peak intensities compared to manual grinding.  Sample preparation is one of the most important aspects to quantitative XRD because of preferred orientation and sample displacement.  In order to reduce user error such as, induced preferred orientation, it is essential we learn from previous research and take the proper steps to prepare samples.  The ICDD is a great source for free literature on applications involving XRD and XRF.  We will be posting more discussions on sample preparation and applications in the future.